Last Week I Refused to Teach Factoring

The students in my Freshman Honors class have certain expectations for how a math class works – a teacher lectures, there’s lots of drill practice, and then a test. Breaking this mold, and causing them to think of themselves as reflective learners, is one of my many missions. So this past week, when confronted with factoring, I simply refused to lecture.

My 9th graders have seen factoring before, but it was back in 7th grade, and it was only a surface treatment. So after a brief opener where we discussed what a “factor” means (both numerically and algebraically), I dropped the bomb –

  • I’ve posted your learning targets online
  • I’ve posted videos, resources and practice problems if you need them
  • I’ve set up online practice if you need it
  • You have a timed quiz on Friday (we started on Tuesday)


Panic….apprehension….incredulous looks….

So, you’re not going to teach us?

Nope.  Now get to work.

Here are some details of what I posted:


  • F1: I can identify and factor expressions which involve greatest common factors.
  • F2: I can efficiently factor trinomials of the form ax2+bx+c, where a = 1.
  • F3: I can factor trinomials of the form ax2+bx+c, where a does not equal 1 (or zero).
  • F4: I can identify and factor perfect square trinomials.
  • F5: I can identify and factor “difference of squares” expressions.
  • F6: I can factor expressions which may represent a combination of F1 to F5.
  • F7: I can factor expressions “by parts” (or “by grouping”) when necessary.
  • F8: I can factor expressions which are the sum (or difference) of two cubes.


Each learning target featured a video – some from Khan Academy, and some from other sources I searched for – but I attempted to provide a variety of methods. Some featured grouping as a primary means, others demonstrated the box method or the diamond.  This was the most important aspect of this learning experience: I wanted students to experience a variety of approaches, evaluate them, and make a personal decision about what worked best for them.  The students did not disappoint.

I also posted other online resources, such as worked examples and flowcharts.  One of my favorite resources – Finding Factors from nrich, was also included. Finally, I created an assignment on DeltaMath for each learning target, and a final jumbled assignment. The end of each day featured an exit ticket quiz and recap, to assess progress and provide “next steps” during the week.


Some students latched onto factoring by grouping for every quadratic, and explained their reasoning to their peers.  Many of these same students later in the week found more confidence in their number sense and chose to group only for “tricky” problems. One student was particularly insistent that the box method was the best was to go for all problems. Others found the diamond method helpful – which led to deep conversations about number sense and how to make searches more efficient. And in one fascinating conversation, a student discovered a “trick” he had found online. The group debated the merits of the method, tried some practice…but as nobody in the group could figure out why the method worked, they quickly dismissed it.  Good boys!!!

In the end, the quiz scores were great.  But beyond the scores, I feel confident that the students have made choices about their learning, assessed and revised their thinking, and can move forward using their new tools.


Today I asked students to reflect upon their learning experience, and provide me feedback.

What was your overall feeling about last week’s learning method?  (1 = “Please never do that again”, 5 = “I loved it – do it more”.)


Describe something you LIKED about last week’s classes, and why you liked it.

  • I liked being able to choose what i wanted to do. I could focus on my weaknesses and do less problems on what i was good at. I also appreciated the practice problems.
  • I liked that if you knew a topic you could move on and didn’t have to wait for someone else or the next day of class.
  • I liked that I could learn and do problems at my own speed.

Describe something you DIDN’T LIKE about last week’s classes, and why you didn’t like it.

  • I did not like that you did not explain how to factor
  • I didn’t have as much instruction from the master of factoring. {note – I suppose this is me?}
  • the teacher wasn’t involved

This last comment intrigues me…and I’m not sure if I should be bothered by it…I don’t think I should be.  In many respects, I feel I worked harder during the classes, as students were all over the place.  But I also realize students don’t see all of this going on around them.  I’ve become intrigued by how I can be less of a teacher and more of a facilitator in my classes, and this was a solid step forward I feel.

Now, off to plan to not lecture tomorrow….

How I Stumbled Into Math Modeling Without Even Realizing It.

We started a unit on counting principles this week in my 9th grade honors class – permutations, combinations – eventually leading to the binomial theorem.  Since my  classes had used Desmos Activity Builder a few times and were familiar with the need to enter a 5-character code to start an activity, I planned to ask the following question as a class opener:

How many different 5-character DesmosActivity Builder codes exist?


This problem would have likely met my intended goal of having kids think about the fundamental counting principle in a real-world context.  It also would have taken about 10 minutes of class time, and have been forgotten about by the next day.  It felt like I was missing an opportunity to develop a deeper discussion.  A slight tweak to the question added just the right layer:

Activity codes for Desmos Activity Builder currently have 5 characters, as shown here.  When will Activity Codes need to expand to 6 characters?

And now we have a problem which requires a bit more than a quick calculation.  To start, I asked students to work in their teams to make a list of information they would need to help solve this problem.  This was not easy or comfortable for them – but a preliminary list of questions emerged from group discussions:

  • How many 5-character codes are there?
  • Are codes used less on weeekends and summers?
  • Can letters repeat in codes?
  • How many codes a day are used?

This was a good start to set kids in motion to think about how to solve the problem.  I’m hoping they will think about new questions or revise their questions as we go along…the class did not disappoint!


As kids worked, clarifying questions came up – some of which I just didn’t know the answer to, and hadn’t really thought about:

Mr. L, are there any zeroes in codes? Kids might confuse them with the letter O.

Mr. L, I don’t see any L’s in the codes?

Excellent observations, and restrictions we need to think about in our calculation. A tweet to the Desmos crew lent some clarity, and added more restrictions!

Thank for the intel, Eli!


This was tricky for my class. To help, I reminded students that when we started the semester, codes were 4 characters.  When did the Desmos 5-character era begin?  A quick scroll through my history (shown here) provides some info. After further interrogation from my class, I shared that Activity Builder started around July of last year with 4-character codes.  Add this to our bucket of helpful info.



Writing a draft solution was the next task for students.  But instead of turning it in to me immediately, I formed class teams of 3 where students shared their drafts and ideas.  I used this opportunity to build teams of students who I observe don’t often interact or chat.  From here, I gave students another day to think about their explanation – keeping in mind that there are no right answers to this question, only answers we can defend. But it still feels like we are missing a key piece in this problem……


The next morning as students were mingling before the bell, I looked across the room at the laptop of Jacob – one of my more insightful, but also introverted, students:


It’s the mother lode!

The google trends graph for student.desmos.  Yes! Yes! Yes!  Stop everything kids, we need to talk!  Jacob – tell us all about this graph. How does this new info factor into our estimates?  What should we do with it?  Is this going to continue?  And with this, I gave the class an extra day to think about their responses, share, and dig deeper.  And while many students simply estimated a growth rate by doubling or tripling their computed rate (this is fine with me), I am getting some responses which far exceed my expectations – like Jacob, who developed a growth function and evaluated integrals (did I mention this is a 9th grade class????)


Yep, this was definitely better than my originally intended problem!



Seeing Stars with Random Sampling

Adapted from Introduction to Statistical Investigations, AP Version, by Tintle, Chance, Cobb, Rossman, Roy, Swanson and VanderStoep

Before the Thanksgiving break, I started the sampling chapter in AP Statistics.  This is a unit filled with new vocabulary and many, many class activities.  To get students thinking about random sampling, I have used the “famous” Random Rectangles activity (Google it…you’ll find it) and it’s cousin – Jelly Blubbers. These activities are effective in causing students to think about the importance of choosing a random sample from a population, and considering communication of procedures. But a new activity I first heard about at a summer session on simulation-based inference, and later explained by Ruth Carver at a recent PASTA meeting, has added some welcome wrinkles to this unit.  The unit uses the one-variable sampling applet from the Rossman-Chance applet collection, and is ideal for 1-1 classrooms, or even students working in tech teams.  Also, Beth Chance is wonderful…and you should all know that!

starsIn my classroom notes, students first encounter the “sky”, which has been broken into 100 squares. To start, teams work to define procedures for selecting a random sample of 10 squares, using both the “hat” (non-technology) method, and a method using technology (usually a graphing calculator). Before we draw the samples however, I want students to think about the population – specifically, will a random sample do a “good job” with providing estimates? Groups were asked to discuss what they notice about the sky.  My classes immediately sensed something worth noting:

There are some squares where there are many stars (we end up calling these “dense” squares) and some where there are not so many.

Before we even drew our first sample, we are talking about the need to consider both dense and non-dense areas in our sample, and the possibility that our sample will overestimate or underestimate the population, even in random sampling.  There’s a lot of stats goodness in all of this, and the conversation felt natural and accessible to the students.

Studestars1nts then used their technology-based procedure to actually draw a random sample of 10 squares, marking off the squares.  But counting the actual stars is not reasonable, given their quantity – so it’s Beth Chance to the rescue!  Make sure you click the “stars” population to get started.  Beth has provided the number of stars in each square, and information regarding density, row and column to think about later.

But before we start clicking blindly, let’s describe that population.   The class quickly agrees that we have a skewed-right distribution, and take note of the population mean – we’ll need it to discuss bias later.

Click “show sampling options” on the top of the screen and we can now simulate random samples.  First, students each drew a sample of size 10 – the bottom of the screen shows the sample, summary statistics, and a visual of the 10 squares chosen from the population.


Groups were asked to look at their sample means, share them with neighbors, and think about how close these samples generally come to hitting their target.  Find a neighbor where few “dense” area were selected , or where many “dense” squares made the cut, how much confidence do we have in using this procedure to estimate the population mean?

Eventually I unleashed the sampling power of the applet and let students draw more and more samples.  And while a formal discussion of sampling distributions is a few chapters away, we can make observations about the distributions of these sample means.


And I knew the discussion was heading in the right direction when a student observed:

Hey, the population is definitely skewed, but the means are approximately normal.  That’s odd…

Yep, it sure is…and more seeds have been planted for later sampling distribution discussions. But what about those dense and non-dense areas the students noticed earlier?  Sure, our random samples seem to provide an unbiased estimator of the population mean, but can we do better?  This is where Beth’s applet is so wonderful, and where this activity separates itself from Random Rectangles.  On the top of the applet, we can stratify our sample by density, ensuring that an appropriate ratio of dense / non-dense areas (here, 20%) is maintained in the sample.  The applet then uses color to make this distinction clear: here, green dots represent dense-area squares.


Finally, note the reduced variability in the distribution from stratified samples, as opposed to random samples. The payoff is here!

Later, we will look at samples stratified by row and/or column.  And cluster samples by row or column will also make an appearance.  There’s so much to talk about with this one activity, and I appreciate Ruth and Beth for sharing!

Compute Expected Value, Pass GO, Collect $200

Photo Oct 11, 7 08 49 AM.jpgExpected Value – such a great time to talk about games, probability, and decision making!  Today’s lesson started with a Monopoly board in the center of the room. I had populated the “high end” and brown properties with houses and hotels.  Here’s the challenge:

When I play Monopoly, my strategy is often to buy and build on the cheaper properties.  This leaves me somewhat scared when I head towards the “high rent” area if my opponents built there.  It is now my turn to roll the dice.  Taking a look at the board, and assuming that my opponents own all of the houses and hotels you see, what would be the WORST square for me to be on right now?  What would be the BEST square?

For this question, we assumed that my current location is between the B&O and the Short Line Railroads.  The conversation quickly went into overdrive – students debating their ideas, talking about strategy, and also helping explain the scenario to students not as familiar with the game (thankfully, it seems our tech-savvy kids still play Monopoly!).  Many students noted not only the awfulness of landing on Park Place or Boardwalk, but also how some common sums with two dice would make landing on undesirable squares more likely.


After our initial debates, I led students through an analysis, which eventually led to the introduction of Expected Value as a useful statistic to summarize the game.  Students could start on any square they wanted, and I challenged groups to each select a different square to analyze.  Here are the steps we followed.


First, we listed all the possible sums with 2 dice, from 2 to 12.

Next, we listed the Monopoly Board space each die roll would causes us to land on (abbreviated to make it easier).

Next, we looked at the dollar “value” of each space.  For example, landing on Boardwalk with a hotel has a value of -$2,000.  For convenience, we made squares like Chance worth $0.  Luxury Tax is worth -$100.  We agreed to make Railroads worth -$100 as an average.  Landing on Go was our only profitable outcome, worth +$200. Finally, “Go to Jail” was deemed worth $0, mostly out of convenience.

Finally, we listed the probability of each roll from 2 to 12.

Now for the tricky computations.  I moved away from Monopoly for a moment to introduce a basic example to support the computation of expected value.

I roll a die – if it comes out “6” you get 10 Jolly Ranchers, otherwise, you get 1.  What’s the average number of candies I give out each roll?

This was sufficient to develop need for multiplying in our Monopoly table – multiply each value by its probability, find the sum of these and we’ll have something called Expected Value.  For each initial square, students verified their solutions and we shared them on a class Monopoly board.


The meaning of these numbers then held importance in the context of the problem – “I may land on Park Place, I may roll and hit nothing, but on average I will lose $588 from this position”.

HOMEWORK CHALLENGE: since this went so well as a lesson today, I held to the theme in providing an additional assignment:

Imagine my opponent starts on Free Parking.  I own all 3 yellow properties, but can only afford to purchase 8 houses total.  How should I arrange the houses in order to inflict the highest potential damage to my opponent?


I’m looking forward to interesting work when we get back to school!

Note: I discussed my ideas about this topic in a previous post.  Enjoy!

Pulling In To the Station

My school isn’t 1-1 with technology yet, though there are rumblings we will get there next year….or the year after….or 2031…anyway, it’s time to get techy!  My new classroom features 4 computer stations in the back – nice to have, but not super-helpful with classes of about 24 each. Station-model classroom structure has been super-helpful in my pre-calculus class in the first month. Besides the chance for all students to participate in rich technology-based activities, I’ve had the opportunity to carve out valuable small-group time with students.  Here’s an example:

In our first pre-calc unit, we review functions and their shirts, folding in new ideas like the step function, piecewise and even/odd functions.  My objective for the class was for students to consider functions in varied forms.  As students entered class, playing cards were drawn to establish their groupings, so there were 3 groups of 7 or 8.  With 15 minutes on the classroom clock, students started on their first station:

  1. Group 1 gathered in a small group with me in a circle of desks, where we worked through proving functions even or odd, and sketching their graphs.
  2. marbleslideGroup 2 worked at the computer stations on a Desmos Marbleslides featuring quadratic functions, with many students pairing up to work together. If you have never tried a Marbleslides, run and play now – we’ll wait for you to come back…
  3. Group 3 worked out in the courtyard (hey, my new classroom leads outside – which is nice) on a group task involving a piecewise function.

After groups had rotated through all 3 activities, we had time to recap / share and assess our learning over the hour.  Here’s why I need to do this more:

  • The small group station let me touch base with every student, assess strengths, find out what we need to work on, and provide feedback to everyone.
  • Marbleslides is sneaky awesome! When students begin to obsess over function shifts and how to restrict domains and don’t want to peel away from their computer, you know something is going right.
  • Class went fast! It felt like the mixed practice from Let It Stick was now becoming part of my classroom culture.
  • My pre-calc is mostly 11th and 12th graders, who have had a pretty traditional classroom experience in their math lives.  I can sense they appreciate that something difference is happening.
  • All students are responsible for their learning.  Even the least-active task, the piecewise function, was used the next class for sharing out and a jumping-off point.


A Bulleted Assemblage of Items for the New School Year (but not a list)

The “list” article is a popular device, and one which often draws the eyeballs. Lists are also, often, a cop-out – a way to express many ideas without having to dig too deeply.  I hate lists….

As I start my new school year tomorrow, I give you this bulleted assemblage of items which are on my mind as I look forward to our first day.

  • Fawn Nguyen’s 7 Deadly Sins of Teaching Math is required reading for all professionals. In particular, I strive to pay more attention to my (teacher talking / student talking ) ratio.  I like to think I am strong in this area, but I need to do better. Before the end of the last school year, our district screened the movie “Most Likely to Succeed” to all professional staff.  In an opening scene, the teacher provides first-day freshmen with an opening day task – and then leaves the room.  The students struggle, the teacher eventually intervenes, but a powerful classroom culture is established.  I want to provide more tasks to my students where I’m simply not needed.
  • I have used a number of opening-day activities for AP Statistics over 14 years. Distracted Driving and the Henrico hiring case are two I used most often. But I think Doug Tyson’s Smelling Parkinson’s activity could be my new favorite. It’s a powerful premise which gets kids talking about the possible vs the plausible on day 1, with a hint of simulation thrown in for good measure. I show the video below to the class and right away the statistical importance of what we do for the entire school year is established.
  • Desmos Activity Builder will take on a much bigger role in my classroom.  I’ve created activities for both my Pre-Calculus and my freshman Prob/Stat class to review their understanding, and also to serve as my “getting to know you” opportunity.  Look forward to sharing out how it goes.
  • Shoes.  I hate new shoes. They’re tight and often rip apart the back of my ankle until I break them in.  If we can have pre-washed jeans, then we can have pre-worn shoes.  We need our best people on this.
  • Who knew a cute Pythagorean triple generator could be of interest to so many. After I posted about an interesting share from Ken Sullins at the PCTM summer conference, so many folks chimed in with their ideas.  Thanks especially to Joel Bezaire who shared additional ideas from Twitter Math Camp.  I’m using this in my pre-calc class on day 1.

  • I’ve given the same probability problem to my freshmen for the last few years. I love everything about this problem on day 1: it gets kids talking, it gets kids struggling, and it tells me much about their problem solving background.


OK, maybe this was a list after all.  I need to do some last-minute ironing.

Who Assessed it Better? AP Stats Inference Edition

Free-response questions and exam information in this post freely available on the College Board – AP Statistics website

Today I am stealing a concept from Dan Meyer’s task comparison series “Who Wore it Best”, and bringing it to the AP Statistics exam world. In the series of 6 free-response questions on the AP Stats exam, it is not unusual for one question to focus solely on inference. Compare these two questions, which each deal with inference for proportions.

From 2012:


From 2016:


I read (graded) the question from 2012 as an AP Exam reader, and observed a variety of approaches. I find that while many students understand the structure of a hypothesis test, it’s the nuance – the rationales for steps – which are often lost in the communication. In the 2012 question, students were expected to do the following:

  1. Identify appropriate parameters
  2. State null and alternate hypotheses
  3. Identify conditions
    • Independent, random samples and normality of sampling distribution
  4. Name the correct hypothesis procedure
  5. Compute / communicate test statistic and p-value
  6. Compare the p-value to an alpha level
  7. Make an appropriate conclusion in context of the problem

It’s quite a list.  And given that individual AP exam problems are worth a total of 4 points, steps are often combined into one scoring element.  Here, naming the test and checking conditions were bundled – as such, precision in providing a rationale for conditions was often forgiven.  For example, if students identified the large sample sizes as a necessary condition, this was sufficient, even if there was no recognition of a link to normality of sampling distributions.  Understanding the structure of a hypothesis test – with appropriate communication – was clearly the star of the show.  While inference is one the “big ideas” in AP Statistics, my view is that questions like this from 2012 encourage cookbook statistics, where memorized structure take the place of deeper understanding.

So, it was with much excitement that I saw question 5 from 2016.  Here, the interpretation of a confidence interval was preserved. But I appreciate the work of the test development committee in parts b and c; rather than have students simply list and confirm conditions for inference, the exam challenges students to be quite specific about their rationales. With parts b and c, students certainly struggled more than with the conditions in 2012, but I hope their inclusion causes statistics teachers to consider their approach to hypothesis conditions. The mean scores for each question speak to struggles students on this question, compared to traditional hypothesis testing structure.

  • 2012: 1.56 (out of 4)
  • 2016: 1.27 (out of 4)

The inclusion of part b of question 5 this year, where students were asked to defend the np > 10 condition, was perfect timing for my classes.  This year, I tried a new approach to help develop student understanding of the binomial distribution / sampling distribution relationship. I found that while many students will continue to resort to the “short cut” – memorizing conditions – a higher proportion of students were able to provide clear communication of this inference condition.

The AP Statistics reading features “Best Practices Night” – where classroom ideas are shared.  You can find resources from the last few years at Jason Molesky’s APStatsMonkey site. I shared my np > 10 ideas with the group, and received many positive comments about it.  Enjoy my slides here, and feel free to contact me with questions regarding this lesson:

Finally, I can’t express how wonderfully rich a professional-development experience the AP reading is.  I always find myself with a basket of new classroom ideas and contacts to share with – it’s stats-geek Christmas.  For me, 2016 is the year the #MTBoS started to make its mark at the Stats reading – I met so many folks from Twitter, and we held our first-ever tweet-up!

Also, the vibrant Philadelphia-area stats community was active as always.  We meet as a group a few times a year to share ideas and lessons; seeing so many from this area participate in the reading makes us all better with what we do for our students.